
[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[720-726]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

The Evaluation of a Performance Model for a MOST Network
Je-Hoon Lee1, Yongrak Choi1, Sang-Choon Kim1, and Si-Byung Nam1*

*1Div of Electronics, Infnormation and Communication Eng., Kangwon National University, Samcheok
Campus, 1 Joongang-ro, Samcheok, Gangwon-do, 245-711, Rep. Of Korea

limdg@kangwon.ac.kr
Abstract

This paper presents a MOST network model that can support the network configurations and data
transmission in the network is composed with various devices employing MOST bus. It is implemented high level
description language, C# and it is verified in software framework, .NET framework 4.5. The simulation results show
that the proposed MOST model can capture the network configuration successfully whenever the network is
initialized as well as it is changed. In addition, the proposed model can support the analysis on network payload
during the data transmission. The system designers can make design decisions such as the number of nodes and the
amount of data transmission using the proposed MOST model. In particular, it can be useful to evaluate the MOST
devices in SoC design environment.

Keywords: MOST, automotive equipment, serial interface, bus model

Introduction
 The technological developments of
communication in-vehicle from traditional automotive
point-to-point wiring to in-vehicle networking, using
industry standards such as the LIN (local interconnect
network), SAE J2602, CAN (controller area network)
and FlexRay have enabled carmakers to add many new
electronic features for comfort, convenience and
infotainment, as well as improved control of various
subsystems. Recently, most vehicles have embedded
high-grade sound, CD changers, navigation systems, and
an additional multimedia and communication system.
Thus, it is desirable to introduce a new backbone
network that can support various data transfer modes
with a wide allowable bandwidth for encompassing those
various embedded in-vehicle devices.

MOST (media oriented systems transport) is a
bus standard for vehicle multimedia networks capable of
transferring high-quality audio and video data, packet
data, real-time control commands, and other signals at a
maximum of 150 Mbps. MOST is a high-speed
multimedia network specification that is optimized by
the automotive industry by defining the physical and the
data link layers [1-2]. MOST technology is used in
almost every car brand worldwide. However, consumer
demands for new applications that support the better-
known, user-friendly, multimedia side of the internet are
increasing. For example, typical car navigation simply
gives the precise direction to the destination along roads
using a GPS and map database. It was created to provide
the fastest route when considering real-time traffic
information that is obtained from the internet. In

addition, the number of vehicle mounted devices should
increase owing to the advent of new gadgets.

In order to evaluate automotive equipment
employing a MOST interface, it is necessary to analyze
the functional behaviors in the MOST network using a
simulation tool or equivalent model. There is a
commercial simulation tool for the MOST system
implemented in SoB (system on a board) design
methodology [3]. However, it is not suitable to use in a
SoC (system on a chip) design environment owing to the
lack of performance estimation and verification functions
performed at system-level bus model. Recently, various
convergent technology for traditional automotive devices
have been introduced, and they should force engineers to
evaluate them in the SoC design environment. Thus, it is
desirable to evaluate the new simulation model for the
MOST interface, in particular, suitable for a SoC design
environment. This paper presents a new simulation
model for the MOST standard that can provide
simulation results during a MOST network configuration
and data transfer phase. It will help to integrate the
MOST interface into various automotive applications.

The Proposed Behavioral Modeling for MOST
Network

A MOST network is able to manage up to 64
MOST devices in a ring configuration. In this network,
one device is designated a controller, network master,
and the others becomes slaves, that are, network slaves
[4].

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[720-726]

Each device includes external host controller
having various function blocks and INIC (intelligent
network interface controller) as shown in Fig. 1. In
addition, each device connected the cables that
compatible with a MOST specification. In particular, a
function block is an object for controlling dedicated
functions that used in MOST networks and it is well
defined in a MOST specification. The MOST
specification uses the term “function” to include both
properties and methods. The properties describe or
change the condition of the function to be controlled and
the methods execute actions which, after a specified
period of time, achieve a result [4-6]. In MOST
specification, there are various function blocks for
controlling applications as well as for managing the
network. These function blocks also define the interface
of an application to be controlled. Function block is
abbreviated to FBlock in this paper. An INIC is
responsible to perform the network service including
network configuration and data transmissions. The
proposed behavioral model is based on the modeling of
behaviors of INIC and it is to emulate the status of
network including network management and data
transfer. It will help to verify the functional and
communicated behaviors of the MOST devices.

Network Initialization and Re-construction in MOST
network

The proposed MOST network model includes
the behavioral model for network management as well as
the data communications. First, we make a behavioral
model for network management. This model is
responsible to configure the network when the network is
initialized. It is also responsible to manage the network
re-configuration whenever the connection with MOST
devices is changed.
 In a MOST specification, there are four major
function blocks for network management functions such
as the NetBlock, PowerMaster, NetworkMaster, and the
ConnectionMaster. A NetBlock is responsible for the
administration of a device. After wake-up of a MOST
network, the network master builds up all communicative
relations with slaves via a system scan, that is, start-up as
shown in Fig. 2(a). After successful system initialization,
the communicative relations between the individual slave
components are established and the current system
configuration results are stored in central registry in
network master. The latter lists all function blocks
existing in the network, and the respective address of
each device, on which a function block is implemented.
All other devices in the ring are called network slaves.
They may have a decentralized registry in network slave,
a subset of the central registry. It comprises the function
blocks of the communication partners of the device.

Fig. 1. MOST network architecture.

Fig. 2. Operational sequence of a system scans by the

NetworkMaster in MOST.
If the number of active nodes changes after

start-up, an event, NCE (network change event) that
indicates the change occurs. The NetworkMaster
performs a system scan in which it queries the FBlocks
of all devices via the function FBlockIDs to determine
the system configuration after NCE occurs. Figure 2
shows the operational sequence of a system scan. After
the initial system scan, devices may also inform the
NetworkMaster of new or disabled FBlocks by sending a
status message of the function FBlockIDs with a new list
of FBlocks. NetworkMaster requests the information of
slaves by sending control message, FBlockIDs.Get().
Then, the NetworkSlave returns control message, that is,
F.BlockIDs.Status(FBlockDList) as shown in Fig. 2 in
the par section. The obtained result is to update Central
Registry. This process is repeatedly performed for all
NetworkSlaves. If all nodes have registered in Central
Registry without errors, initialization process is
completed. The opt section describes the case that the
NetworkMaster sends the Control message
Configuration.Status(OK), if the network is in the
NotOK state. The network configuration information
obtained from all nodes is stored in Central Registry in a
NetworkMaster. It contains the logical addresses and the
corresponding functional blocks for all nodes that is
mapped with the node position address as shown in Fig
3. This process is achieved by exchanging control
message between the NetworkMaster and NetworkSlaves
as shown in Fig. 4. The type of control messages and the

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[720-726]

sequence is shown in Fig. 4. Thus, Central Registry
contains all network information, while all slaves have a
Decentralized Registry. In order to construct the
Decentralized Registry for each NetworkSlave, a
NetworkSlave requests the information to the
NetworkMaster sending control message,
CentralRegistry.Get(FBlockID, InstID). The
NetworkMaster transfers FBlockID, InstID, and Logical
address of the corresponding NetworkSlave using,
CentralRegistry.Status(FBlockInfoList).

The proposed MOST bus model is commenced
to initialize the MOST network as shown in Fig. 5. After
startup signal is issued, the proposed model generates
single network master node and the number of network
slaves using the function, master_create() and
slave_create(), respectively. Simultaneously, the Central
Registry for network master and Decentral Registry for
slaves are initialized. Then, the proposed MOST bus
model starts to scan the MOST network for querying all
nodes present about their function blocks. It addresses
each node position address. The queried node informs
the network master about its stored logical node address
and the function blocks ready for communication.
Whenever network master receives the information of
each slaves, it updates the information stored in Central
Registry. It contains the position address, logical address,
FBlockID, and InstID for the corresponding slaves. After
system scan is completed, the network master stores all
information for every slave. Then, it copies the contents
of Central Registry to Decentral Registry. And the
process of MOST network initialization is completed.

If there is any change in the current network
configuration, it enters NEWEXT state to update the
network information. If the node is newly added to the
current MOST network, the network master starts the
scan process. The address of the added slave initially set
to 0xFFFF and the network master assigns the address of
the slave by updating the Central Registry. If the node
connected is disconnected, the network master initializes
the Central Registry using the function, that is,
CentralRegistry_Delete() as shown in Table 1. Then, it
starts to initialize the MOST network again. In the same
way of network initialization process, the network master
queries the information of all slaves separately. After the
Central Registry is fully constructed, the network master
broadcasts the contents to all slaves. Figure 5 shows the
flowchart of the network initialization process of the
proposed MOST model.

*MN:Master Node *PA:Position Address *SN:Slave Node

*LA:Logical Address
Fig. 3. Illustration of Central Registry and Decentral one.

Fig. 4. (a) Control message format according to the kind of
operations, (b) the flowchart to query the current status of

a property.

Fig. 5. MOST network model flow chart.

Packet Data Transmission via MOST Network

MOST is a multi-channel network that can
support the data transport mechanisms for control,
streaming and packet data. The new MOST specification
Rev. 3.0 distinguishes between synchronous and
isochronous data. The latter can be transported only by
MOST150 specification.

The control channel provides control message
service for network administration. It is secured by a
CRC with automatic retry. A MOST supports three
different types of control messages according to the
allowable bandwidth. The control message length is
varied depending on the specifics of the message.
However, the maximum number of single frames is
limited to prevent the control channel from occupying
too much bandwidth. Second, a MOST supports
streaming data channel for synchronous data and
isochronous one. A synchronous data is used to transmit
the real-time multimedia data such as audio and video
data. It uses a application message service to establish
the connection between nodes. A master node sends
control message to establish node connection before the
data transmission. There is no repetition in the case of

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[720-726]

communication errors. In particular, MOST150
introduced isochronous transfer for high density
multimedia data, in example, MPEG video streams.
Isochronous channels are handled in much the same way
as synchronous channels in MOST. Third, a MOST
supports packet data channel that provides transmission
of longer data packet and control data. A conventional
token-ring is introduced for the arbitration to solve the
contention. It uses a data link layer protocol such as the
TCP/IP protocol or MHP (MOST high protocol). The
node having token can transfer data packet on the packet
data channel. Figure 6 shows the flowchart for packet
data transmission.

Fig. 6. Flow chart of packet data transmission.

Throughput Model for Data Transmissions
 This section introduces the detailed explanations
of the proposed throughput model for MOST network.
First of all, MOST network employs a conventional
token-ring for the arbitration to solve the contention. The
node having token can transfer data packet on the packet
data channel. To model a MOST network properly, we
must first make assumptions about the initial
probabilities to request a network ownership for each
node. Then, we make formulas to calculate the
probabilities to receive the grants of network ownership
from an arbiter for every node separately. Next, we
calculate again the probabilities to request a bus
ownership for each master for next round and we
calculate probabilities to receive the grant for the
corresponding master. Finally, we make the general
formulas for requesting bus ownerships and receiving the
grants for all masters until the allotted data transmissions
are completed.
 The proposed throughput model adapts a
probabilistic analysis method for each node in MOST
network. There are four major assumptions regarding the
proposed model. First, we assume the proposed model is
developed in the shared bus based on token-ring
architecture. It is assumed that once a node possesses the
network ownership, other nodes cannot access the
network until the node releases the ownership of

network. Second, the arbitration policy is similar with
original TDM (time division multiplexing) technique.
When we assume that the proposed model is based on a
MOST network consists of N nodes from M1 to MN, the
timing wheel for time division multiplexing consists of
same number of time slots that are mapped to each
master. The alphabet represents the sequence of the
allotted time slots. Each time slot can span single
transactions via MOST network for the corresponding
node. Third, we define the new term, round as the time
that taken the timing wheel is rotated once. Before each
round starts, the nodes request bus ownership to transfer
the data. Then, an arbiter assigns the timing slots for each
node. If the node does not request the network
ownership, the allotted time slot is wasted. Fourth, we
assume each node has an ideal buffer that is large enough
to store the data shall be transferred within the time limit
allotted for each bus task.
A probability to request network ownership for each
node
 The proposed performance model is based on a
bus task model. Many SoC system applications can be
seen as being object based, in example, they can be
characterized by a dynamic set of objects that can
dynamically appear or disappear depending on
operational scenarios of target system. We consider the
set of objects as a set of real-time bus task. A bus task is
a basic unit for the data transmissions on an on-chip bus
and it is partitioned into one or more bus tenures which
are defined as the maximum time any node can hold the
bus prior to relinquishing the bus to other contending
nodes [9]. Each node issues the network ownership
request repeatedly until it wins the contention. Thus, the
number of requests that are issued by each node shall be
changed during the different bus tasks are performed.
That is to say, each node should have the set of different
numbers of network requests during each bus task.

The bus task is periodic in nature with a fixed
execution requirement each period. If multiple nodes
connect to MOST network, multiple requests can be
outstanding. Then, the timing wheel in token-ring
arbitration matches the outstanding request and the time
slot for each node. In this paper, we refer to a set of
outstanding requests to request network ownership as a
task set. This task set is performed in one or more rounds
which are in turn partitioned as multiple time slots is the
same number of the nodes.

 First, we commence to generate the formulas
related with the probabilities to request network
ownership for each node. Let the set of nodes be M1, M2,
… , Mn. All nodes have the allotted data transmissions
according to the operational scenarios of target SoC. At
the beginning of each task, let the number of the data
transmissions assigned by each node be ND(M1), ND(M2),

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[720-726]

… , ND(Mn). Total number of data transactions that shall
be performed in the specific bus task, TD(i), is obtained
from the sum of the allotted data transmissions for all
nodes as ND(M1)+ND(M2)+ … +ND(Mn). For this
analysis, deadlines are coincident with the end of period.
A task transfers all allotted data from the source node
into the destination one before the end of period, Tj that
is the number of cycles for each master during a task.
Consequently, the probability to request network
ownership for each node should be significantly
dependent upon the relationship between the number of
the allotted data transmissions and the length of deadline
during each task. These probabilities are calculated at the
beginning of each task and all nodes renew their
probabilities to request network ownership whenever
every round is started.

 We set the initial probability to request network
ownership for k-th node at the beginning of each bus task
to PR1(Mk). We only consider the amount of data
transferred and the required number of cycles for
deadlines to simplify the proposed model. The initial
probability to request bus ownership for each node
should be in proportional to the number of allotted data
transfers. In addition, all nodes have same length of
deadline in the same ask. Thus, the initial probability to
request bus ownership for k-th master is obtained by
dividing the number of assigned data transfers, ND(Mk)
by the allowable number of cycles for its deadline, Tj as
shown in Eq. (1).

0

()
P () D k

R k
j

N M
M

T
=

 (1)

 Then, the initial probability to issue the request

bus ownership should be updated at the beginning of
every round. PRi(Mk) represents the updated initial
probabilities to request network ownership for k-th node
at the beginning of the i-th round. There is a closed
relationship between initial probability for each bus task,
PR1(Mk) and the updated probabilities for the successive
rounds, PRi(N). The more data transfers are successfully
performed in previous round, the fewer requests are
pending in the present round. Consequently, the initial
bus request probabilities for two consecutive rounds, PRi-

1(Mk) and PRi(Mk), are linked to the probability to receive
grants from bus arbiter in the previous round.

 The probability to request bus ownership for k-
th master, PRi(Mk) at the beginning of i-th round can be
obtained from Eq. (2).

1

()
P ()

()
i

Di k
R k n

Di i
i

R M
M

R M
=

=
∑

 (2)

Here, i represents the number of rounds. RDi(Mk)

represents the remaining data transfers for k-th node and

1

()
n

Di i
i

R M
=
∑

 represents total sum of the remaining data
transfers for all nodes.

A probability to be granted network ownership for
each node
 Based on the characteristics of TDM arbitration,
the probabilities to receive the bus ownership for each
node can be obtained as follows. We first consider the
TDM-based MOST network consisting of k nodes and
the different numbers of time slots in the timing wheel
are assigned for each node. Let the number of the time
slots that are assigned for each node be NT(M1), NT(M2),
… , NT(Mn). Total number of time slots in timing wheel
for each round is obtained from the sum of the allotted
time slots for all nodes, NT(M1)+NT(M2)+ … +NT(Mn). In
a first round during each task, the probability to be
granted for k-th node, PG1(Mk) can be described as Eq.
(3).

1 0

1

()
P () {P () ()}

()

T k
G k R k D k n

T i
i

N M
M M N M

N M
=

= × ×
∑

 (3)

 where, PR0(Mk) and ND(Mk) represents the initial

probability to request network ownership and the number
of the allotted data transfers in the task for k-th node,
respectively. The number of requests for k-th node is
given by PR0(Mk)× ND(Mk). Then, the probability to
receive grants from the arbiter depends on the ratio of the
number of allotted time slots for the corresponding node
and total number of time slots in timing wheel. This
result is obtained as the second term in Eq. (3).
Consequently, the probability to receive the grants for k-
th node in first round is obtained from Eq. (3). This
process is repeatedly performed for all nodes separately
to obtain the number of granted time slots for the
corresponding node.

 After the first round is completed, the number of
pending requests will be issued by each node becomes
changed according to the number of successful data
transfer in first round. The number of pending requests in
second round, PR2(Mk), is the results of the subtraction
between the number of initially allotted data transfers,
ND(Mk) and the number of data transfers successfully
performed in the first round, PG1(Mk). This result is also
impact on the probability to request bus ownership for k-
th node, PR2(Mk) at the beginning of 2nd round as
described in Eq. (4).

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[720-726]

2

2

2
1

()
P ()

()

D k
R k n

D i
i

R M
M

R M
=

=
∑

 (4)

Here, RD2(Mk) represents the remaining data transfers

for k-th node at the beginning of second round and it is
obtained from ND(Mk)-PG1(Mk). Similarly, total sum of
the pending requests for all nodes is obtained from the
sum of all remaining data transfers and it can be

represented as 1
()

n

Di i
i

R M
=
∑

.
The number of pending requests for each node is

updated whenever the previous round is completed as
depicted in Eq. (5).

 (5)

 Here, ND(Mk) represents the number of pending

requests for k-th node at the beginning of each task. In
addition, ΣPGi(Mk) is the sum of data transfers that are
successfully performed until the previous round.
Whenever each round is completed, the node update the
number of pending requests using the result of Eq. (5)
and this result is used in Eq. (2) to calculate the renewed
probability to request the network ownership in the next
round, PRi(Mk). Finally, this result is used to calculate the
probability to be granted for k-th node in n-th round,
PGn(Mk) as shown in Eq. (6).

1 1

1

()
P () {P () ()}

()

T k
Gn k Rn k Dn k n

T i
i

N M
M M R M

N M
− −

=

= × ×
∑

 (6)

As shown in Eq. (6), a throughput of MOST network

employing TDM arbitration policy significantly depends
on the number of grants from a bus arbiter since it
impacts on the number of pending requests and the
probability to request network ownership every time the
round is passed. In particular, the number of allotted time
slots for each node should be important.

Simulation Results
 The proposed MOST bus model is evaluated
using .Net Framework 4.5. The MOST network
comprises single network master and n slaves. They are
connected in a ring topology. The maximum number of
nodes in the ring is limited as 64. The proposed MOST
model can be divided into two major blocks. The one is
network management and the other is data transmission.
 First, we construct MOST network model
simulator with a network master and 63 slaves as shown

in Fig. 7. After MOST network wake-up, the network
initialization process is commenced. A network master
starts a network scan to obtain the network connection
information from the nodes that are connected. Each
slave transfers the information that is stored in Central
Registry. This process is repeatedly performed until all
slave nodes complete the data transmission. Then,
network master store the results in its Central Registry.
After the network initialization process, the network
master starts to broadcast the stored information in
Central Registry. Whenever the slave node receives the
network information for the corresponding node, it stores
the information in its Decentral registry as shown in Fig.
7. Figure 7 shows final results of the network
initialization process and all slave nodes successfully
store their network information in their Decentral
registry. Thus, this result shows that the proposed MOST
network model successfully construct the MOST
network.

Fig. 7. Simulation results from the proposed MOST
network simulator after all nodes in MOST network

complete the network initialization process.

 Second, we simulate the internal status
in MOST network during the data transmissions. In
this simulation, we change the length of packet that
are allowable in MOST specifications in order to
analyze the effect of the size of transmitted data
packets on the throughput. Theoretically, the
maximum packet length on the packet data channel
in 48 bit addressing mode is 1,522 bytes. In
MOST150, the length of header is 12 bytes. Thus,
the maximum length for stream and packet data
should be 93 quadlets, that is, 372 bytes. Thus, it
requires at least 5 frames to transfer the packet data
with maximum packet length. It introduces the loss
of 81 quadlets in MOST protocol and it represents
the device does not use the allowable bandwidth
efficiently. From the simulation during the data

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[720-726]

transmission, we obtain the length of packet data for
the MOST frame without significant loss of
allowable bandwidth as shown in Table 2. For
example, we set the length of packet to the
maximum length that are allowable in MOST
specification, that is, 64 quadlets. In this case, it
requires the number of frames shall be transferred
are 6. On the contrary, the MOST network transfers
384 times repeatedly when we set the length of
packet to the minimum length that are allowable in
MOST specification, 1 quadlets. Each frame should
include the header to store the information related
with data transmission. Thereby, it becomes an
obstacles to enhance the throughput of MOST
network.

Table 1. The number of data transmissions for each node.

 Finally, we show the comparison results

between the proposed bus model and the typical high-
level simulator, MaxSim as shown in Fig. 8. The
difference is reduced with a growing number of data
transactions. The difference for the first bus task is
almost 19% and the slope of the difference decreases
with a growing number of data transmissions. It is due to
the fact that the proposed bus model is based on a
probabilistic analysis method. This empirical probability
of an event is an estimate that the event will happen
based on how often the event occurs after running an
experiment. If the number of trials becomes huge, this
probability is closed to the value of theoretical
probability. Consequently, the average difference
between the proposed bus model and the typical high-
level simulator is almost 11%.

Fig. 8. Difference comparison according to the number of

bus tasks

Conclusion
 A MOST is a high-speed multimedia network
specification that is optimized by the automotive
industry. This paper proposes a MOST network model
that defines the physical and the data link layers in
software evaluation environment. The proposed MOST

bus model is to analyze the status of network during the
network configuration and data transmission. Thus, it can
be used to develop the MOST applications without
configuration of MOST network in practice. The
proposed MOST bus model can point out the real-time
changes in registries used in MOST nodes whenever the
network configuration is initialized and changed. In
addition, it can show the amount of data transmission on
MOST bus for each node. Thus, it is possible to analyze
the amount of data shall be transferred according to the
transferring type without significant payload overhead
and it helps to determine the number of node connected
in target MOST bus. In addition, the difference between
the proposed bus model and typical cycle-level simulator
is under 11%. In particular, the proposed bus model does
not require the cycle-accurate system model of target
SoC. Consequently, the proposed bus model is useful for
the early evaluation environment of target SoC. The
simulation results prove the efficiency of the proposed
MOST bus model. Thus, the proposed MOST bus model
can be useful to evaluate the MOST interface chip in
SoC design environment.

References

[1] MOST Cooperation,
http://www.mostcooperation.com.

[2] S. Proferl, M. Becht, P. Pauw, “150Mbit/s
MOST, the next generation automotive
information system,” Proc. of ICTON, pp. 1-2 ,
(2010)

[3] http://www.smsc.com/Products/Automotive/MO
ST/.

[4] Andreas Grzemba, MOST:The automotive
multimedia network, FRANZIS (2011)

[5] MOST Cooperation, MOST Specification
Rev.3.0, (2010)

[6] MOST Cooperation, MOST Dynamic
Specification 3V0-2, (2012)

[7] Y. Jin, R. Liu, X. He, Y. Huang, “A distributed
power management design based on MOST
networks,” ComSIS, vol.8, no.4, pp. 1097-1115
(2011)

[8] A. Braun, O. Bringmann, D. Lettnin, W.
Rosenstiel, “Simulation-based verification of
the MOST net interface specification revision
3.0,” Proc. of DATE10, pp.538-543 (2010)

[9] K. A. Kettler, D. I. Katcher, and J. K.
Strosnider, “A modeling methodology for real-
time/multimedia operating systems,” Proc. of
IEEE Real Time Technology and Applications
Symposium, pp. 1-15, 1995.

