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Abstract 

This paper presents a MOST network model that can support the network configurations and data 
transmission in the network is composed with various devices employing MOST bus. It is implemented high level 
description language, C# and it is verified in software framework, .NET framework 4.5. The simulation results show 
that the proposed MOST model can capture the network configuration successfully whenever the network is 
initialized as well as it is changed. In addition, the proposed model can support the analysis on network payload 
during the data transmission. The system designers can make design decisions such as the number of nodes and the 
amount of data transmission using the proposed MOST model. In particular, it can be useful to evaluate the MOST 
devices in SoC design environment. 
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Introduction 
 The technological developments of 
communication in-vehicle from traditional automotive 
point-to-point wiring to in-vehicle networking, using 
industry standards such as the LIN (local interconnect 
network), SAE J2602, CAN (controller area network) 
and FlexRay have enabled carmakers to add many new 
electronic features for comfort, convenience and 
infotainment, as well as improved control of various 
subsystems. Recently, most vehicles have embedded 
high-grade sound, CD changers, navigation systems, and 
an additional multimedia and communication system. 
Thus, it is desirable to introduce a new backbone 
network that can support various data transfer modes 
with a wide allowable bandwidth for encompassing those 
various embedded in-vehicle devices. 

MOST (media oriented systems transport) is a 
bus standard for vehicle multimedia networks capable of 
transferring high-quality audio and video data, packet 
data, real-time control commands, and other signals at a 
maximum of 150 Mbps. MOST is a high-speed 
multimedia network specification that is optimized by 
the automotive industry by defining the physical and the 
data link layers [1-2]. MOST technology is used in 
almost every car brand worldwide. However, consumer 
demands for new applications that support the better-
known, user-friendly, multimedia side of the internet are 
increasing. For example, typical car navigation simply 
gives the precise direction to the destination along roads 
using a GPS and map database. It was created to provide 
the fastest route when considering real-time traffic 
information that is obtained from the internet. In 

addition, the number of vehicle mounted devices should 
increase owing to the advent of new gadgets. 

In order to evaluate automotive equipment 
employing a MOST interface, it is necessary to analyze 
the functional behaviors in the MOST network using a 
simulation tool or equivalent model. There is a 
commercial simulation tool for the MOST system 
implemented in SoB (system on a board) design 
methodology [3]. However, it is not suitable to use in a 
SoC (system on a chip) design environment owing to the 
lack of performance estimation and verification functions 
performed at system-level bus model. Recently, various 
convergent technology for traditional automotive devices 
have been introduced, and they should force engineers to 
evaluate them in the SoC design environment. Thus, it is 
desirable to evaluate the new simulation model for the 
MOST interface, in particular, suitable for a SoC design 
environment. This paper presents a new simulation 
model for the MOST standard that can provide 
simulation results during a MOST network configuration 
and data transfer phase. It will help to integrate the 
MOST interface into various automotive applications. 
 
The Proposed Behavioral Modeling for MOST 
Network 

A MOST network is able to manage up to 64 
MOST devices in a ring configuration. In this network, 
one device is designated a controller, network master, 
and the others becomes slaves, that are, network slaves 
[4].  
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Each device includes external host controller 
having various function blocks and INIC (intelligent 
network interface controller) as shown in Fig. 1. In 
addition, each device connected the cables that 
compatible with a MOST specification. In particular, a 
function block is an object for controlling dedicated 
functions that used in MOST networks and it is well 
defined in a MOST specification. The MOST 
specification uses the term “function” to include both 
properties and methods. The properties describe or 
change the condition of the function to be controlled and 
the methods execute actions which, after a specified 
period of time, achieve a result [4-6]. In MOST 
specification, there are various function blocks for 
controlling applications as well as for managing the 
network. These function blocks also define the interface 
of an application to be controlled. Function block is 
abbreviated to FBlock in this paper. An INIC is 
responsible to perform the network service including 
network configuration and data transmissions. The 
proposed behavioral model is based on the modeling of 
behaviors of INIC and it is to emulate the status of 
network including network management and data 
transfer. It will help to verify the functional and 
communicated behaviors of the MOST devices. 

 
Network Initialization and Re-construction in MOST 
network 

The proposed MOST network model includes 
the behavioral model for network management as well as 
the data communications. First, we make a behavioral 
model for network management. This model is 
responsible to configure the network when the network is 
initialized. It is also responsible to manage the network 
re-configuration whenever the connection with MOST 
devices is changed. 
  In a MOST specification, there are four major 
function blocks for network management functions such 
as the NetBlock, PowerMaster, NetworkMaster, and the 
ConnectionMaster. A NetBlock is responsible for the 
administration of a device. After wake-up of a MOST 
network, the network master builds up all communicative 
relations with slaves via a system scan, that is, start-up as 
shown in Fig. 2(a). After successful system initialization, 
the communicative relations between the individual slave 
components are established and the current system 
configuration results are stored in central registry in 
network master. The latter lists all function blocks 
existing in the network, and the respective address of 
each device, on which a function block is implemented. 
All other devices in the ring are called network slaves. 
They may have a decentralized registry in network slave, 
a subset of the central registry. It comprises the function 
blocks of the communication partners of the device.  

 

 
Fig. 1. MOST network architecture. 

 
Fig. 2. Operational sequence of a system scans by the 

NetworkMaster in MOST. 
If the number of active nodes changes after 

start-up, an event, NCE (network change event) that 
indicates the change occurs. The NetworkMaster 
performs a system scan in which it queries the FBlocks 
of all devices via the function FBlockIDs to determine 
the system configuration after NCE occurs. Figure 2 
shows the operational sequence of a system scan. After 
the initial system scan, devices may also inform the 
NetworkMaster of new or disabled FBlocks by sending a 
status message of the function FBlockIDs with a new list 
of FBlocks. NetworkMaster requests the information of 
slaves by sending control message, FBlockIDs.Get(). 
Then, the NetworkSlave returns control message, that is, 
F.BlockIDs.Status(FBlockDList) as shown in Fig. 2 in 
the par section. The obtained result is to update Central 
Registry. This process is repeatedly performed for all 
NetworkSlaves. If all nodes have registered in Central 
Registry without errors, initialization process is 
completed. The opt section describes the case that the 
NetworkMaster sends the Control message 
Configuration.Status(OK), if the network is in the 
NotOK state. The network configuration information 
obtained from all nodes is stored in Central Registry in a 
NetworkMaster. It contains the logical addresses and the 
corresponding functional blocks for all nodes that is 
mapped with the node position address as shown in Fig 
3. This process is achieved by exchanging control 
message between the NetworkMaster and NetworkSlaves 
as shown in Fig. 4. The type of control messages and the 
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sequence is shown in Fig. 4. Thus, Central Registry 
contains all network information, while all slaves have a 
Decentralized Registry. In order to construct the 
Decentralized Registry for each NetworkSlave, a 
NetworkSlave requests the information to the 
NetworkMaster sending control message, 
CentralRegistry.Get(FBlockID, InstID). The 
NetworkMaster transfers FBlockID, InstID, and Logical 
address of the corresponding NetworkSlave using, 
CentralRegistry.Status(FBlockInfoList). 

The proposed MOST bus model is commenced 
to initialize the MOST network as shown in Fig. 5. After 
startup signal is issued, the proposed model generates 
single network master node and the number of network 
slaves using the function, master_create() and 
slave_create(), respectively. Simultaneously, the Central 
Registry for network master and Decentral Registry for 
slaves are initialized. Then, the proposed MOST bus 
model starts to scan the MOST network for querying all 
nodes present about their function blocks. It addresses 
each node position address. The queried node informs 
the network master about its stored logical node address 
and the function blocks ready for communication. 
Whenever network master receives the information of 
each slaves, it updates the information stored in Central 
Registry. It contains the position address, logical address, 
FBlockID, and InstID for the corresponding slaves. After 
system scan is completed, the network master stores all 
information for every slave. Then, it copies the contents 
of Central Registry to Decentral Registry. And the 
process of MOST network initialization is completed.  

If there is any change in the current network 
configuration, it enters NEWEXT state to update the 
network information. If the node is newly added to the 
current MOST network, the network master starts the 
scan process. The address of the added slave initially set 
to 0xFFFF and the network master assigns the address of 
the slave by updating the Central Registry. If the node 
connected is disconnected, the network master initializes 
the Central Registry using the function, that is, 
CentralRegistry_Delete() as shown in Table 1. Then, it 
starts to initialize the MOST network again. In the same 
way of network initialization process, the network master 
queries the information of all slaves separately. After the 
Central Registry is fully constructed, the network master 
broadcasts the contents to all slaves. Figure 5 shows the 
flowchart of the network initialization process of the 
proposed MOST model.  

 
*MN:Master Node *PA:Position Address *SN:Slave Node 

*LA:Logical Address 
Fig. 3. Illustration of Central Registry and Decentral one. 

 
Fig. 4. (a) Control message format according to the kind of 
operations, (b) the flowchart to query the current status of 

a property. 

 
Fig. 5. MOST network model flow chart. 

 
Packet Data Transmission via MOST Network 

MOST is a multi-channel network that can 
support the data transport mechanisms for control, 
streaming and packet data. The new MOST specification 
Rev. 3.0 distinguishes between synchronous and 
isochronous data. The latter can be transported only by 
MOST150 specification. 

The control channel provides control message 
service for network administration. It is secured by a 
CRC with automatic retry. A MOST supports three 
different types of control messages according to the 
allowable bandwidth. The control message length is 
varied depending on the specifics of the message. 
However, the maximum number of single frames is 
limited to prevent the control channel from occupying 
too much bandwidth. Second, a MOST supports 
streaming data channel for synchronous data and 
isochronous one. A synchronous data is used to transmit 
the real-time multimedia data such as audio and video 
data. It uses a application message service to establish 
the connection between nodes. A master node sends 
control message to establish node connection before the 
data transmission. There is no repetition in the case of 
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communication errors. In particular, MOST150 
introduced isochronous transfer for high density 
multimedia data, in example, MPEG video streams. 
Isochronous channels are handled in much the same way 
as synchronous channels in MOST. Third, a MOST 
supports packet data channel that provides transmission 
of longer data packet and control data. A conventional 
token-ring is introduced for the arbitration to solve the 
contention. It uses a data link layer protocol such as the 
TCP/IP protocol or MHP (MOST high protocol). The 
node having token can transfer data packet on the packet 
data channel. Figure 6 shows the flowchart for packet 
data transmission. 

 
Fig. 6. Flow chart of packet data transmission. 

 
Throughput Model for Data Transmissions 
  This section introduces the detailed explanations 
of the proposed throughput model for MOST network. 
First of all, MOST network employs a conventional 
token-ring for the arbitration to solve the contention. The 
node having token can transfer data packet on the packet 
data channel. To model a MOST network properly, we 
must first make assumptions about the initial 
probabilities to request a network ownership for each 
node. Then, we make formulas to calculate the 
probabilities to receive the grants of network ownership 
from an arbiter for every node separately. Next, we 
calculate again the probabilities to request a bus 
ownership for each master for next round and we 
calculate probabilities to receive the grant for the 
corresponding master. Finally, we make the general 
formulas for requesting bus ownerships and receiving the 
grants for all masters until the allotted data transmissions 
are completed.  
  The proposed throughput model adapts a 
probabilistic analysis method for each node in MOST 
network. There are four major assumptions regarding the 
proposed model. First, we assume the proposed model is 
developed in the shared bus based on token-ring 
architecture. It is assumed that once a node possesses the 
network ownership, other nodes cannot access the 
network until the node releases the ownership of 

network. Second, the arbitration policy is similar with 
original TDM (time division multiplexing) technique. 
When we assume that the proposed model is based on a 
MOST network consists of N nodes from M1 to MN, the 
timing wheel for time division multiplexing consists of 
same number of time slots that are mapped to each 
master. The alphabet represents the sequence of the 
allotted time slots. Each time slot can span single 
transactions via MOST network for the corresponding 
node. Third, we define the new term, round as the time 
that taken the timing wheel is rotated once. Before each 
round starts, the nodes request bus ownership to transfer 
the data. Then, an arbiter assigns the timing slots for each 
node. If the node does not request the network 
ownership, the allotted time slot is wasted. Fourth, we 
assume each node has an ideal buffer that is large enough 
to store the data shall be transferred within the time limit 
allotted for each bus task. 
A probability to request network ownership for each 
node 
  The proposed performance model is based on a 
bus task model. Many SoC system applications can be 
seen as being object based, in example, they can be 
characterized by a dynamic set of objects that can 
dynamically appear or disappear depending on 
operational scenarios of target system. We consider the 
set of objects as a set of real-time bus task. A bus task is 
a basic unit for the data transmissions on an on-chip bus 
and it is partitioned into one or more bus tenures which 
are defined as the maximum time any node can hold the 
bus prior to relinquishing the bus to other contending 
nodes [9]. Each node issues the network ownership 
request repeatedly until it wins the contention. Thus, the 
number of requests that are issued by each node shall be 
changed during the different bus tasks are performed. 
That is to say, each node should have the set of different 
numbers of network requests during each bus task.  

The bus task is periodic in nature with a fixed 
execution requirement each period. If multiple nodes 
connect to MOST network, multiple requests can be 
outstanding. Then, the timing wheel in token-ring 
arbitration matches the outstanding request and the time 
slot for each node. In this paper, we refer to a set of 
outstanding requests to request network ownership as a 
task set. This task set is performed in one or more rounds 
which are in turn partitioned as multiple time slots is the 
same number of the nodes. 

 First, we commence to generate the formulas 
related with the probabilities to request network 
ownership for each node. Let the set of nodes be M1, M2, 
… , Mn. All nodes have the allotted data transmissions 
according to the operational scenarios of target SoC. At 
the beginning of each task, let the number of the data 
transmissions assigned by each node be ND(M1), ND(M2), 
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… , ND(Mn). Total number of data transactions that shall 
be performed in the specific bus task, TD(i), is obtained 
from the sum of the allotted data transmissions for all 
nodes as ND(M1)+ND(M2)+ … +ND(Mn). For this 
analysis, deadlines are coincident with the end of period. 
A task transfers all allotted data from the source node 
into the destination one before the end of period, Tj that 
is the number of cycles for each master during a task. 
Consequently, the probability to request network 
ownership for each node should be significantly 
dependent upon the relationship between the number of 
the allotted data transmissions and the length of deadline 
during each task. These probabilities are calculated at the 
beginning of each task and all nodes renew their 
probabilities to request network ownership whenever 
every round is started. 

 We set the initial probability to request network 
ownership for k-th node at the beginning of each bus task 
to PR1(Mk). We only consider the amount of data 
transferred and the required number of cycles for 
deadlines to simplify the proposed model. The initial 
probability to request bus ownership for each node 
should be in proportional to the number of allotted data 
transfers. In addition, all nodes have same length of 
deadline in the same ask. Thus, the initial probability to 
request bus ownership for k-th master is obtained by 
dividing the number of assigned data transfers, ND(Mk) 
by the allowable number of cycles for its deadline, Tj as 
shown in Eq. (1). 
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 Then, the initial probability to issue the request 

bus ownership should be updated at the beginning of 
every round. PRi(Mk) represents the updated initial 
probabilities to request network ownership for k-th node 
at the beginning of the i-th round. There is a closed 
relationship between initial probability for each bus task, 
PR1(Mk) and the updated probabilities for the successive 
rounds, PRi(N). The more data transfers are successfully 
performed in previous round, the fewer requests are 
pending in the present round. Consequently, the initial 
bus request probabilities for two consecutive rounds, PRi-

1(Mk) and PRi(Mk), are linked to the probability to receive 
grants from bus arbiter in the previous round.  

 The probability to request bus ownership for k-
th master, PRi(Mk) at the beginning of i-th round can be 
obtained from Eq. (2). 
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Here, i represents the number of rounds. RDi(Mk) 

represents the remaining data transfers for k-th node and 
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 represents total sum of the remaining data 
transfers for all nodes. 

 
A probability to be granted network ownership for 
each node 
  Based on the characteristics of TDM arbitration, 
the probabilities to receive the bus ownership for each 
node can be obtained as follows. We first consider the 
TDM-based MOST network consisting of k nodes and 
the different numbers of time slots in the timing wheel 
are assigned for each node. Let the number of the time 
slots that are assigned for each node be NT(M1), NT(M2), 
… , NT(Mn). Total number of time slots in timing wheel 
for each round is obtained from the sum of the allotted 
time slots for all nodes, NT(M1)+NT(M2)+ … +NT(Mn). In 
a first round during each task, the probability to be 
granted for k-th node, PG1(Mk) can be described as Eq. 
(3). 
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 where, PR0(Mk) and ND(Mk) represents the initial 

probability to request network ownership and the number 
of the allotted data transfers in the task for k-th node, 
respectively. The number of requests for k-th node is 
given by PR0(Mk)× ND(Mk). Then, the probability to 
receive grants from the arbiter depends on the ratio of the 
number of allotted time slots for the corresponding node 
and total number of time slots in timing wheel. This 
result is obtained as the second term in Eq. (3). 
Consequently, the probability to receive the grants for k-
th node in first round is obtained from Eq. (3). This 
process is repeatedly performed for all nodes separately 
to obtain the number of granted time slots for the 
corresponding node. 

 After the first round is completed, the number of 
pending requests will be issued by each node becomes 
changed according to the number of successful data 
transfer in first round. The number of pending requests in 
second round, PR2(Mk), is the results of the subtraction 
between the number of initially allotted data transfers, 
ND(Mk) and the number of data transfers successfully 
performed in the first round, PG1(Mk). This result is also 
impact on the probability to request bus ownership for k-
th node, PR2(Mk) at the beginning of 2nd round as 
described in Eq. (4). 
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Here, RD2(Mk) represents the remaining data transfers 

for k-th node at the beginning of second round and it is 
obtained from ND(Mk)-PG1(Mk). Similarly, total sum of 
the pending requests for all nodes is obtained from the 
sum of all remaining data transfers and it can be 

represented as 1
( )

n

Di i
i
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∑

.  
The number of pending requests for each node is 

updated whenever the previous round is completed as 
depicted in Eq. (5). 

 

    (5) 
 
 Here, ND(Mk) represents the number of pending 

requests for k-th node at the beginning of each task. In 
addition, ΣPGi(Mk) is the sum of data transfers that are 
successfully performed until the previous round. 
Whenever each round is completed, the node update the 
number of pending requests using the result of Eq. (5) 
and this result is used in Eq. (2) to calculate the renewed 
probability to request the network ownership in the next 
round, PRi(Mk). Finally, this result is used to calculate the 
probability to be granted for k-th node in n-th round, 
PGn(Mk) as shown in Eq. (6). 
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As shown in Eq. (6), a throughput of MOST network 

employing TDM arbitration policy significantly depends 
on the number of grants from a bus arbiter since it 
impacts on the number of pending requests and the 
probability to request network ownership every time the 
round is passed. In particular, the number of allotted time 
slots for each node should be important. 
 
Simulation Results 
  The proposed MOST bus model is evaluated 
using .Net Framework 4.5. The MOST network 
comprises single network master and n slaves. They are 
connected in a ring topology. The maximum number of 
nodes in the ring is limited as 64. The proposed MOST 
model can be divided into two major blocks. The one is 
network management and the other is data transmission. 
  First, we construct MOST network model 
simulator with a network master and 63 slaves as shown 

in Fig. 7. After MOST network wake-up, the network 
initialization process is commenced. A network master 
starts a network scan to obtain the network connection 
information from the nodes that are connected. Each 
slave transfers the information that is stored in Central 
Registry. This process is repeatedly performed until all 
slave nodes complete the data transmission. Then, 
network master store the results in its Central Registry. 
After the network initialization process, the network 
master starts to broadcast the stored information in 
Central Registry. Whenever the slave node receives the 
network information for the corresponding node, it stores 
the information in its Decentral registry as shown in Fig. 
7. Figure 7 shows final results of the network 
initialization process and all slave nodes successfully 
store their network information in their Decentral 
registry. Thus, this result shows that the proposed MOST 
network model successfully construct the MOST 
network. 

 

 
Fig. 7. Simulation results from the proposed MOST 
network simulator after all nodes in MOST network 

complete the network initialization process. 
 
  Second, we simulate the internal status 
in MOST network during the data transmissions. In 
this simulation, we change the length of packet that 
are allowable in MOST specifications in order to 
analyze the effect of the size of transmitted data 
packets on the throughput. Theoretically, the 
maximum packet length on the packet data channel 
in 48 bit addressing mode is 1,522 bytes. In 
MOST150, the length of header is 12 bytes. Thus, 
the maximum length for stream and packet data 
should be 93 quadlets, that is, 372 bytes. Thus, it 
requires at least 5 frames to transfer the packet data 
with maximum packet length. It introduces the loss 
of 81 quadlets in MOST protocol and it represents 
the device does not use the allowable bandwidth 
efficiently. From the simulation during the data 
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transmission, we obtain the length of packet data for 
the MOST frame without significant loss of 
allowable bandwidth as shown in Table 2. For 
example, we set the length of packet to the 
maximum length that are allowable in MOST 
specification, that is, 64 quadlets. In this case, it 
requires the number of frames shall be transferred 
are 6. On the contrary, the MOST network transfers 
384 times repeatedly when we set the length of 
packet to the minimum length that are allowable in 
MOST specification, 1 quadlets. Each frame should 
include the header to store the information related 
with data transmission. Thereby, it becomes an 
obstacles to enhance the throughput of MOST 
network.  
 

Table 1.  The number of data transmissions for each node. 

 
  Finally, we show the comparison results 

between the proposed bus model and the typical high-
level simulator, MaxSim as shown in Fig. 8. The 
difference is reduced with a growing number of data 
transactions. The difference for the first bus task is 
almost 19% and the slope of the difference decreases 
with a growing number of data transmissions. It is due to 
the fact that the proposed bus model is based on a 
probabilistic analysis method. This empirical probability 
of an event is an estimate that the event will happen 
based on how often the event occurs after running an 
experiment. If the number of trials becomes huge, this 
probability is closed to the value of theoretical 
probability. Consequently, the average difference 
between the proposed bus model and the typical high-
level simulator is almost 11%. 

 
Fig. 8. Difference comparison according to the number of 

bus tasks 
 
Conclusion 
  A MOST is a high-speed multimedia network 
specification that is optimized by the automotive 
industry. This paper proposes a MOST network model 
that defines the physical and the data link layers in 
software evaluation environment. The proposed MOST 

bus model is to analyze the status of network during the 
network configuration and data transmission. Thus, it can 
be used to develop the MOST applications without 
configuration of MOST network in practice. The 
proposed MOST bus model can point out the real-time 
changes in registries used in MOST nodes whenever the 
network configuration is initialized and changed. In 
addition, it can show the amount of data transmission on 
MOST bus for each node. Thus, it is possible to analyze 
the amount of data shall be transferred according to the 
transferring type without significant payload overhead 
and it helps to determine the number of node connected 
in target MOST bus. In addition, the difference between 
the proposed bus model and typical cycle-level simulator 
is under 11%. In particular, the proposed bus model does 
not require the cycle-accurate system model of target 
SoC. Consequently, the proposed bus model is useful for 
the early evaluation environment of target SoC.  The 
simulation results prove the efficiency of the proposed 
MOST bus model. Thus, the proposed MOST bus model 
can be useful to evaluate the MOST interface chip in 
SoC design environment.  
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